Crop canopy sensing – your virtual farm walk?

What is canopy sensing?

Canopy sensing uses sensors to measure reflectance from the crop surface. This information is often presented in the form of a vegetation index. There are a range of vegetation indices that can be used – the most well-known is the Normalised Difference Vegetation Index (NDVI). Vegetation indices correlate with crop biomass and crop nitrogen uptake. There are a range of different platforms and methods for collecting crop canopy information including satellites, tractor mounted sensors and UAVs (Unmanned Aerial Vehicles) or drones.

How can we use information from canopy sensing?

Canopy sensing is most commonly used as a basis for variable rate nitrogen (N) applications. A crop with a well-developed thick canopy will have different N requirements to a crop with a less well-developed canopy. Information on the crop canopy can be used to vary the N rate across a field, usually by applying more N to thinner areas of the crop and less to thicker areas.

The data also provide a good overall picture of crop performance across fields and farms offering a ‘virtual’ field walk. Farm level crop canopy maps can be used to identify areas of underperforming crop and better target management interventions.

Understanding crop variability

Within-field variability is usually apparent on most farms. The challenge is to understand what factors are driving crop variability and which of these we can manage.

Sometimes the reason for crop variability may be clear, for example areas of lower soil pH, lower water holding capacity in lighter textured areas of the field or differences in soil structure, depth and drainage. However, if the reason for the variability is not clear, a targeted approach to soil and crop sampling in contrasting areas of good/poor performing crop can be useful.

If the causes of yield variation can be identified and eliminated, the yields in the low performing areas will increase resulting in ‘quick wins’ for all crops grown in the rotation. This approach is most effective for localised areas where limiting factors can be easily identified such as low pH and areas of poor soil drainage.

Final thought

Focussing on crop variability can help identify and address yield limiting factors. However, it may never be possible to eliminate the effect of soil variability on crop performance, particularly in inherently variable fields.

Related Organisations

Content below is from across the PEP community and is not necessarily endorsed by Stewards or by PEP

Connected Content

The use of robotics is rapidly developing in agriculture, with large and small autonomous vehicles becoming commercially available.

The agri-tech sector is vibrant and growing, with many exciting companies, organisations and networks are working to develop agri-tech solutions.

The major commodity crops in the UK are wheat, barley, oilseed rape, field beans, sugar beet and potatoes, but around half of agricultural land grows grass.   

Unmanned aerial vehicles (UAVs), more commonly known as drones, are being increasingly used in agriculture to improve farming efficiency and productivity.

Next Generation Crop Analytics

A range of digital technologies promise to transform agriculture, including sensing, robotics, artificial intelligence, wireless networks & IoT, big data, decision support tools, modelling, digital twins and precision farming. 

Many technologies now exist to monitor land at a range from scales, from hand-held sensors and simple cameras, through tractor mounted sensors, drones, aeroplanes through to satellites.

Precision farming involves the use of GPS, sensing and control technologies to use spatial data to manage soils, crops and livestock. 

Established in 1971, Cambridge based Delta-T Devices specialises in measurement sensors and monitoring systems for agriculture and horticulture.

ipaast-czo: Interoperable Precision Agricultural and Archaeological Sensing Technologies Remote and near-surface sensing technologies such as satellite imaging, UAV imaging, and geophysical survey are used in the practice of precision agriculture to support farmers and land managers to make data-driven management decisions. Archaeologists use many of these same sensing technologies to investigate the buried evidence for past human activities and make this evidence for the heritage of agricultural landscapes visible. Fundamentally, practitioners and researchers in both precision agriculture and archaeology are invested in developing a better understanding of soil conditions and their impacts on plant development by using advanced sensing technologies and related analytical methods. Consequently, there is a vast, untapped potential for sharing data and analytical approaches, enabling new research in both domains at an unprecedented scale and level of detail, leading to enhanced interpretations of the character of the agricultural landscape.    

As pioneers in UK precision farming since 1993 we know the difference between sustainable improvements to crop production and the latest trends. Our early commitment to the principle of applying inputs at the right rate and in the right place led the way for 20 years of scientific innovation. Today, SOYL still leads the way and our commercial services are backed by the UK’s largest precision farming specific research and development programme.

We help our customers understand, monitor and predict the environment – agriculture, land, and climate risks are our particular focus areas.

Precision farming company with 20 years experience, based in Scotland but active across the UK. 

Lots of people and organisations take photos in agriculture, of people, landscapes, fields, buildings, machines, animals, crops, insects, plants, the natural environment or just the countryside.  

Article in Remote Sensing about estimating wheat yields from satellite data:

This Topic doesn't yet have a Stewarded summary, but connected groups, content and organisations show below. Click the 'Ask to Join' button if you would like to be a Steward for this Topic and provide a summary of current knowledge and recommend useful resources, organisations, networks and projects. "Like" this Topic if you would like to see it prioritised for providing a wikipedia style summary.

Precision farming specialists

Measurement and forecasting of weather is a major interest in agriculture

Write whatever you want here - this is the main section. You can add links, add pictures and embed videos. To paste text from elsewhere use CTRL+Shift+V to paste without formatting. Add videos by selecting 'Full HTML' below, copying the 'embed html' from the source page (eg Youtube), clicking 'Source' above and pasting where you want the video to appear.
You can upload an image here. It can be jpg, jpeg, gif or png format.
Upload requirements

You can upload a file here, such as a pdf report, or MS Office documents, Excel spreadsheet or Powerpoint Slides.

Upload requirements
Authors Order
Add Authors here - you can only add them if they already exist on PEP. Just start writing their name then select to add it. To add multiple authors click the 'Add another item' button below.

Please ensure that you have proof-read your content. Pages are not edited further once submitted and will go live immediately.

Configure the meta tags below.

Use tokens to avoid redundant meta data and search engine penalization. For example, a 'keyword' value of "example" will be shown on all content using this configuration, whereas using the [node:field_keywords] automatically inserts the "keywords" values from the current entity (node, term, etc).

Browse available tokens.

Simple meta tags.

The text to display in the title bar of a visitor's web browser when they view this page. This meta tag may also be used as the title of the page when a visitor bookmarks or favorites this page, or as the page title in a search engine result. It is common to append '[site:name]' to the end of this, so the site's name is automatically added. It is recommended that the title is no greater than 55 - 65 characters long, including spaces.
A brief and concise summary of the page's content, preferably 150 characters or less. Where as the description meta tag may be used by search engines to display a snippet about the page in search results, the abstract tag may be used to archive a summary about the page. This meta tag is no longer supported by major search engines.

Meta tags that might not be needed by many sites.

Geo-spatial information in 'latitude; longitude' format, e.g. '50.167958; -97.133185'; see Wikipedia for details.
Geo-spatial information in 'latitude, longitude' format, e.g. '50.167958, -97.133185'; see Wikipedia for details.
Robots
A comma-separated list of keywords about the page. This meta tag is used as an indicator in Google News.
Highlight standout journalism on the web, especially for breaking news; used as an indicator in Google News. Warning: Don't abuse it, to be used a maximum of 7 times per calendar week!
This meta tag communicates with Google. There are currently two directives supported: 'nositelinkssearchbox' to not to show the sitelinks search box, and 'notranslate' to ask Google not to offer a translation of the page. Both options may be added, just separate them with a comma. See meta tags that Google understands for further details.
Used to rate content for audience appropriateness. This tag has little known influence on search engine rankings, but can be used by browsers, browser extensions, and apps. The most common options are general, mature, restricted, 14 years, safe for kids. If you follow the RTA Documentation you should enter RTA-5042-1996-1400-1577-RTA
Indicate to search engines and other page scrapers whether or not links should be followed. See the W3C specifications for further details.
Tell search engines when to index the page again. Very few search engines support this tag, it is more useful to use an XML Sitemap file.
Control when the browser's internal cache of the current page should expire. The date must to be an RFC-1123-compliant date string that is represented in Greenwich Mean Time (GMT), e.g. 'Thu, 01 Sep 2016 00:12:56 GMT'. Set to '0' to stop the page being cached entirely.

The Open Graph meta tags are used to control how Facebook, Pinterest, LinkedIn and other social networking sites interpret the site's content.

The Facebook Sharing Debugger lets you preview how your content will look when it's shared to Facebook and debug any issues with your Open Graph tags.

The URL of an image which should represent the content. The image must be at least 200 x 200 pixels in size; 600 x 316 pixels is a recommended minimum size, and for best results use an image least 1200 x 630 pixels in size. Supports PNG, JPEG and GIF formats. Should not be used if og:image:url is used. Note: if multiple images are added many services (e.g. Facebook) will default to the largest image, not specifically the first one. Multiple values may be used, separated by a comma. Note: Tokens that return multiple values will be handled automatically. This will be able to extract the URL from an image field if the field is configured properly.
The URL of an video which should represent the content. For best results use a source that is at least 1200 x 630 pixels in size, but at least 600 x 316 pixels is a recommended minimum. Object types supported include video.episode, video.movie, video.other, and video.tv_show. Multiple values may be used, separated by a comma. Note: Tokens that return multiple values will be handled automatically.
A alternative version of og:image and has exactly the same requirements; only one needs to be used. Multiple values may be used, separated by a comma. Note: Tokens that return multiple values will be handled automatically. This will be able to extract the URL from an image field if the field is configured properly.
The secure URL (HTTPS) of an image which should represent the content. The image must be at least 200 x 200 pixels in size; 600 x 316 pixels is a recommended minimum size, and for best results use an image least 1200 x 630 pixels in size. Supports PNG, JPEG and GIF formats. Multiple values may be used, separated by a comma. Note: Tokens that return multiple values will be handled automatically. This will be able to extract the URL from an image field if the field is configured properly. Any URLs which start with "http://" will be converted to "https://".
The type of image referenced above. Should be either 'image/gif' for a GIF image, 'image/jpeg' for a JPG/JPEG image, or 'image/png' for a PNG image. Note: there should be one value for each image, and having more than there are images may cause problems.
The date this content was last modified, with an optional time value. Needs to be in ISO 8601 format. Can be the same as the 'Article modification date' tag.
The date this content was last modified, with an optional time value. Needs to be in ISO 8601 format.
The date this content will expire, with an optional time value. Needs to be in ISO 8601 format.

A set of meta tags specially for controlling the summaries displayed when content is shared on Twitter.

Notes:
  • no other fields are required for a Summary card
  • Photo card requires the 'image' field
  • Media player card requires the 'title', 'description', 'media player URL', 'media player width', 'media player height' and 'image' fields,
  • Summary Card with Large Image card requires the 'Summary' field and the 'image' field,
  • Gallery Card requires all the 'Gallery Image' fields,
  • App Card requires the 'iPhone app ID' field, the 'iPad app ID' field and the 'Google Play app ID' field,
  • Product Card requires the 'description' field, the 'image' field, the 'Label 1' field, the 'Data 1' field, the 'Label 2' field and the 'Data 2' field.
A description that concisely summarizes the content of the page, as appropriate for presentation within a Tweet. Do not re-use the title text as the description, or use this field to describe the general services provided by the website. The string will be truncated, by Twitter, at the word to 200 characters.
By default Twitter tracks visitors when a tweet is embedded on a page using the official APIs. Setting this to 'on' will stop Twitter from tracking visitors.
The URL to a unique image representing the content of the page. Do not use a generic image such as your website logo, author photo, or other image that spans multiple pages. Images larger than 120x120px will be resized and cropped square based on longest dimension. Images smaller than 60x60px will not be shown. If the 'type' is set to Photo then the image must be at least 280x150px. This will be able to extract the URL from an image field if the field is configured properly.
The MIME type for the media contained in the stream URL, as defined by RFC 4337.